Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thermoregulatory decisions impact nearly every aspect of the physiology, performance, and ecology of ectotherms. Thus, understanding the factors which influence ectotherm thermoregulatory behaviors across ecological contexts and environmental conditions is essential in predicting responses to novel or changing environments. Specifically, quantifying such behaviors across the entire diel cycle – day and night – is key to understanding the impact on physiological processes that happen during periods of inactivity, such as digestion. Utilizing high-resolution time-series data, we quantified the diel cycle of thermoregulatory behaviors in fed and unfed common wall lizards (Podarcis muralis) over five consecutives days. We first tested the hypothesis that feeding status affects diurnal and nocturnal thermoregulation. Second, we quantified the impact of feeding status on patterns of consistency and correlation within and among individuals in diurnal and nocturnal thermoregulatory behaviors. Lizards modulated their behavior in response to feeding status, conserving energy by choosing lower temperatures when unfed and by seeking higher temperatures when fed. We observed consistent among-individual differences (repeatability) in thermoregulatory behaviors across diurnal and nocturnal periods. Furthermore, diurnal and nocturnal thermoregulatory behaviors were positively correlated within individuals. We demonstrate that this diurnal ectotherm actively thermoregulates during the night, a finding particularly pertinent in urban environments, where artificial light and heat can prolong the active period of lizards. Overall, this research provides valuable insight into the flexible thermoregulation strategies of a species highly successful in expanding its range, demonstrating the importance of considering both diurnal and nocturnal activity.more » « less
-
Ringler, Eva (Ed.)Abstract Thermoregulatory decisions impact nearly every aspect of the physiology, performance, and ecology of ectotherms. Thus, understanding the factors which influence ectotherm thermoregulatory behaviors across ecological contexts and environmental conditions is essential in predicting responses to novel or changing environments. Specifically, quantifying such behaviors across the entire diel cycle—day and night—is key to understanding the impact on physiological processes that happen during periods of inactivity, such as digestion. Utilizing high-resolution time-series data, we quantified the diel cycle of thermoregulatory behaviors in fed and unfed common wall lizards (Podarcis muralis) over five consecutives days. We first tested the hypothesis that feeding status affects diurnal and nocturnal thermoregulation. Second, we quantified the impact of feeding status on patterns of consistency and correlation within and among individuals in diurnal and nocturnal thermoregulatory behaviors. Lizards modulated their behavior in response to feeding status, conserving energy by choosing lower temperatures when unfed and by seeking higher temperatures when fed. We observed consistent among-individual differences (repeatability) in thermoregulatory behaviors across diurnal and nocturnal periods. Furthermore, diurnal and nocturnal thermoregulatory behaviors were positively correlated within individuals. We demonstrate that this diurnal ectotherm actively thermoregulates during the night, a finding particularly pertinent in urban environments, where artificial light and heat can prolong the active period of lizards. Overall, this research provides valuable insight into the flexible thermoregulation strategies of a species highly successful in expanding its range, demonstrating the importance of considering both diurnal and nocturnal activity.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Living in urban environments presents many challenges to wildlife, including exposure to potentially toxic pollutants. For example, the heavy metal lead (Pb) introduces numerous health problems to all animals, including humans. The little work that has been conducted on lead toxicity in reptiles suggests that lizards may be extraordinarily resilient to very high levels of lead pollution, by either avoiding or mitigating the toxicity. To assess the impact of lead exposure, we measured field blood levels and tested for the effects on ecologically relevant performance measures in common wall lizards (Podarcis muralis) – a small reptile particularly capable of thriving in urban environments. We captured lizards from roadside and park habitats across Cincinnati, Ohio, USA, and quantified the concentration of lead in blood samples (n = 71 adult lizards). Lizards from roadside populations had higher blood lead concentrations than lizards from park populations, and females had higher blood lead concentrations than males regardless of habitat type. We then tested two aspects of lizard performance important for survival: (1) balance, a cognitively demanding task, to assess the effect of lead on cognition (N = 41), and (2) running endurance, an aerobic exercise dependent on oxygen (N = 43), to assess the impact of lead on blood oxygen-carrying capacity. We then used correlation analyses to quantify the relationship between lead levels and these ecologically-relevant performance measures. There was no effect of blood lead levels on running endurance, but contrary to our predictions there was a slight positive effect on balance performance, whereby lizards with higher blood lead concentrations slipped less often than lizards with lower blood lead concentrations. Understanding the effects of lead toxicity and resilience in a particularly resistant animal could help us better respond to public health and environmental pollution concerns.more » « less
-
Abstract Addressing how ecosystem services (ES) are distributed among groups of people is critical for making conservation and environmental policy-making more equitable. Here, we evaluate the distribution and equity of changes in ES benefits across demographic and socioeconomic groups in the United States (US) between 2020 and 2100. Specifically, we use land cover and population projections to model potential shifts in the supply, demand, and benefits of the following ES: provision of clean air, protection against a vector-borne disease (West Nile virus), and crop pollination. Across the US, changes in ES benefits are unevenly distributed among socioeconomic and demographic groups and among rural and urban communities, but are relatively uniform across geographic regions. In general, non-white, lower-income, and urban populations disproportionately bear the burden of declines in ES benefits. This is largely driven by the conversion of forests and wetlands to cropland and urban land cover in counties where these populations are expected to grow. In these locations, targeted land use policy interventions are required to avoid exacerbating inequalities already present in the US.more » « less
An official website of the United States government

Full Text Available